SPECIFIC IRREVERSIBLE INHIBITION OF HUMAN AND BOAR

N-ACETYL- B -D-HEXOSAMINIDASE BY 2-ACETAMIDO-2-DEOXY
B-D-GLUCOPYRANOSYL ISOTHIOCYANATE

M.L. Shulman, O.E. Lakhtina and A. Ya. Khorlin

Shemyakin Institute of Bioorganic Chemistry, USSR Academy of Sciences, Moscow V-312, USSR

Received November 12, 1976

SUMMARY

2-Acetamido-2-deoxy-\$\beta\$-D-glucopyranosyl isothiocyanate (I) was obtained by the action of thiophosgene on 2-acetamido-2-deoxy-\$\beta\$-D-glucopyranosylamine.Compound I irreversibly inhibits the human and boar N-acetyl-\$\beta\$-D-hexosaminidase; the dialysis does not restore the enzyme activity. N-Acetyl-D-glucosamine, the competitive inhibitor of N-acetyl-\$\beta\$-D-hexosaminidase, protects the enzyme from inactivation, that testifies to the binding of isothiocyanate I in the active site of the enzyme.

INTRODUCTION

The method of specific irreversible inhibition widely used to clarify structure of active sites of the enzymes has been recently applied for the study of a number of glycosidases of various origin: β -glucosidase¹, β -galactosidase^{2,3} and others^{4,5}. Hitherto, irreversible inhibition of N-acetyl- β -D-hexosaminidase (hexosaminidase; EC 3.2.1.52) has not been described; meanwhile, recently this enzyme attracted attention for it appeared that the genetically determined absence of one or more isozymes of hexosaminidase is directly responsible for such lethal diseases as Tay-Sachs disease and its variant forms^{6,7}.

Earlier we described the active-site-directed irreversible inhibition of sweet-almond β -glucosidase by β -D-glycopyranosylepoxyalkanes and β -D-glucopyranosylesothiocyanate⁸; it was

assumed that similar compounds may be used to block active sites of other glycesidases.

This note deals with the specific irreversible inhibition of human and boar N-acetyl- β -D-hexosaminidase by 2-acetamido-2-deoxy- β -D-glucopyranosyl isothiocyanate (I).

MATERIALS AND METHODS

Synthesis of 2-acetamido-2-deoxy-8-D-glucopyranosyl isothiocyanate (I). - A solution of 2-acetamido-3,4,6-tri-0-acetyl- α -D-glucopyranosyl chloride (1 g) and NaN₂ (0.8 g) in acetone (4 ml) was boiled for 4 hours, evaporated to dryness, chromatographed on silica gel LS (La Chema, ČSSR)(100 - 150 mm, 3 x 15 cm) with chloroform - methanol mixture (19: 1) and crystallized from ether - light petroleum to give 2-acetamido-3,4,6-tri-0-acetyl-2-deoxy- β -D-glucopyranosylazide (II) in a yield of 0.84 g (82%), m.p. $167 - 168^{\circ}$, $I \propto I_D^{20} - 45^{\circ}$ (c1,CHCl₃) (cf. ref. 9); PMR data (signal of H-1 as a doublet at \$ 4.75, $J_{1,2} = 9$ Hz) confirm β -D configuration of a glycosyl bond. Compound II was deacetylated by the action of sodium methoxide in dry methanol, followed by hydrogenation in ethanol in the presence of 20% Pd/C for 3.5 hours to give amorphous 2-acetamido-2-deoxy- β -D-glucopyranosylamine (III) in a yield of 85%, $I \propto I_D^{20}$ -5°(c1,EtOH)(cf. ref. 10). A solution of III (220 mg) in water (2.2 ml) was added to a stirred suspension of CaCO3 (250 mg) in acetone (1.6 ml) containing freshly distilled thiophosgene (0.4 ml) at 10 - 150 C. The suspension was stirred for 2 hours, filtered and evaporated to dryness. The residue was chromatographed on silica gel (100 - 150 mm, 2.5 x 12 cm) with chloroform - methanol mixture (3: 2) to give hygroscopic syrupy I (150 mg), $I \propto I_D^{20} + 25^{\circ}(c1, MeOH)$; t.l.c.: $R_f 0.4$ (CHCl₃: (NHAc). Compound I, if well dried, is stable for 2 - 3 weeks at -10°C. I was acetylated (Ac₂0/Py), chromatographed on silica gel with ether - acetone mixture (19: 1) and crystallized from chloroform - ether to yield 2-acetamido-3,4,6-tri-0-acetyl-2deoxy- β -D-glucopyranosyl isothiocyanate (IV), m.p. 156 - 157°, I \approx ID +11°(c1,CHCl3); t.l.c.: R_f 0.5 (Et₂0 : Me₂CO = 19 : 1); IR data: λ max 2080 (N = C = S), 1750 (OAc), 1660, 1560 cm⁻¹ (NHAc). Anal. Calc. for $C_{15}H_{20}N_{2}O_{8}S$ (MW 388.4): C 46.4, H 5.2, N 7.2. S 8.25. Found: C 46.3, H 5.2, N 7.1, S 8.4.

Compound IV was identical to the sample prepared by a counter synthesis according to the method of ref. 11.

N-Acetyl-\$\beta\$-D-hexosaminidase B from human placenta with specific activity of 310 units per mg of protein was prepared according to the method of ref. 12.

N-Acetyl-\$\beta\$-D-hexosaminidase B from boar epididymis with specific activity of 400 units per mg of protein was prepared according to the method of ref. 13.

Incubation of the enzyme with isothiocyanate I and determination of residual enzymatic activity. - A solution (1 ml) containing the enzyme (0.02-1 mg), bovine serum albumin (100 µg) and isothiocyanate I (50 µmoles), a solution (1 ml) containing the same components and N-acetyl-D-glucosamine (150 µmoles) in addition, and a solution containing only the enzyme and albumin (control) in citrate - phosphate buffer (pH 4.5, µ 0.1) were incubated at 37° C. Throughout the indicated time intervals aliquotes (0.05 ml) were added to 3 mM solution of substrate V containing 0.01% of albumin in the same buffer (2 ml). The mixtures were incubated for 10 minutes at 37° C, the hydrolysis was ceased by adding 1 M Na₂CO₃solution (1 ml) and the liberated p-nitrophenol determined spectrophotometrically at 400 nm.

Dialysis was carried out against citrate - phophate buffer (pH 6.0, μ 0.05) at 4° C for 4 hours (4 x 1 l).

RESULTS AND DISCUSSION

It has been shown that isothiocyanate I irreversibly inhibits N-acetyl- β -D-hexosaminidase of various degree of purity. This refers both to the sulphate - ammonium fractions from human placenta 12 and boar epididymis 13 containing components A and B and to the highly purified components B of the same origin.

^{*1} unit of enzymatic activity is expressed as 1 µmole of p-ni-trophenol liberated for 1 minute as result of enzymatic hydrolysis of p-nitrophenyl 2-acetamido-2-deoxy- β -D-glucopyranoside (V)at 37°C and pH 4.5 in the presence of 0.01% bovine serum albumin.

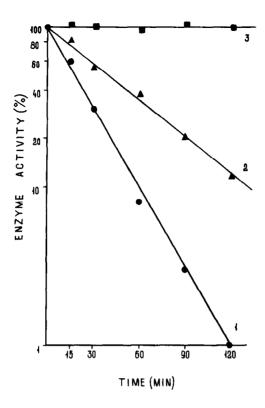


Figure 1. Irreversible inhibition of human hexosaminidase B by isothiocyanate I at pH 4.5 and 37° C in the presence of 0.01% bovine serum albumin. 1) (E) = 0.02 mg/m1, (I) = 50 mM; 2) (E) = 0.02 mg/m1, (I) = 50 mM, (GlcNAc) = 150 mM; 3) (E) = 0.02 mg/m1 (control).

The inactivation of human hexosaminidase B under the action of I is shown in Fig. 1. The inactivation of boar hexosaminidase B develops similarly. It is irreversible for the dialysis of the incubation mixtures does not restore the enzymatic activity; the activity of the control mixture (without I) is maintained.

N-Acetyl-D-glucosamine (GlcNAc), the competitive inhibitor of N-acetyl- β -D-hexosaminidase ¹³⁻¹⁵, preserves the enzyme from inactivation (Fig. 1). Thus, it points to the binding of isothiocyanate I in the active site of the enzyme.

Hence, I is a specific irreversible inhibitor of N-acetyl-\$\beta\$-D-hexosaminidase. The structural analogy of the inhibitor I to the substrate V allows us to assume that in the enzyme - inhibitor complex isothiocyanate group spaced at C-1 atom of the residue of N-acetyl-D-glucosamine would interact with one of the catalytic groupings of the enzyme active site.

REFERENCES

- 1. Bause, E. and Legler, G. (1974) Hoppe-Seyler's Z. Physiol. Chem. 355, 438 442, and literature cited therein.
- 2. Naider, F., Bohak, Z., and Yariv, J. (1972) Biochemistry 11, 3202 3208.
- 3. Brockhaus, M. and Lehmann, J. (1976) FEBS Lett. <u>62</u>, 154 156.
- 4. Saman, E., Claeyssens, M., Kersters-Hilderson, H., and De Bruyne, C. (1976) FEBS Lett. 63, 211 214.
- 5. Quaroni, A., Gershon, E., and Semenza, G. (1974) J. Biol. Chem. <u>249</u>, 6424 6433.
- 6. Okada, S. and O'Brien, J. S. (1969) Science 165, 698 700.
- 7. Sandhoff, K. (1969) FEBS Lett. 4, 351 354.
- 8. Shulman, M. L., Shiyan, S. D., and Khorlin, A. Ya. (1976) Biochim. Biophys. Acta 445, 169 - 181, and literature cited therein.
- 9. Marshall, A. D. and Neuberger, A. (1964) Biochemistry 2, 1596 1600.
- 10. Makino, M., Kojima, T., Ohgushi, T., and Yamashina, I. (1968) J. Biochem. 63, 186 192.
- 11. Micheel, F. and Lengsfeld, W. (1956) Chem. Ber. 89, 1246 1253.
- 12. Tallman, J. F., Brady, R. O., Quirk, J. M., Villalba, M., and Gal, A. E. (1974) J. Biol. Chem. 249, 3489 3499.
- 13. Vikha, G. V., Kaverzneva, E. D., and Khorlin, A. Ya. (1971) Biokhimiya 36, 33 - 42.
- Pugh, D., Leaback, D. H., and Walker, P. G. (1957) Biochem. J. 65, 464 - 469.
- 15. Robinson, D. and Stirling, J. L. (1968) Biochem. J. 107, 321 327.